Design of Novel Algorithm and Architecture for Gaussian Based Color Image Enhancement System for Real Time Applications
نویسندگان
چکیده
This paper presents the development of a new algorithm for Gaussian based color image enhancement system. The algorithm has been designed into architecture suitable for FPGA/ASIC implementation. The color image enhancement is achieved by first convolving an original image with a Gaussian kernel since Gaussian distribution is a point spread function which smoothes the image. Further, logarithmdomain processing and gain/offset corrections are employed in order to enhance and translate pixels into the display range of 0 to 255. The proposed algorithm not only provides better dynamic range compression and color rendition effect but also achieves color constancy in an image. The design exploits high degrees of pipelining and parallel processing to achieve real time performance. The design has been realized by RTL compliant Verilog coding and fits into a single FPGA with a gate count utilization of 321,804. The proposed method is implemented using Xilinx Virtex-II Pro XC2VP40-7FF1148 FPGA device and is capable of processing high resolution color motion pictures of sizes of up to 1600×1200 pixels at the real time video rate of 116 frames per second. This shows that the proposed design would work for not only still images but also for high resolution video sequences.
منابع مشابه
A PRACTICAL APPROACH TO REAL-TIME DYNAMIC BACKGROUND GENERATION BASED ON A TEMPORAL MEDIAN FILTER
In many computer vision applications, segmenting and extraction of moving objects in video sequences is an essential task. Background subtraction, by which each input image is subtracted from the reference image, has often been used for this purpose. In this paper, we offer a novel background-subtraction technique for real-time dynamic background generation using color images that are taken fro...
متن کاملDesign of Novel Architectures and FPGA Implementation of 2D Gaussian Surround Function
A new design and novel architecture suitable for FPGA/ASIC implementation of a 2D Gaussian surround function for image processing application is presented in this paper. The proposed scheme results in enormous savings of memory normally required for 2D Gaussian function implementation. In the present work, the Gaussian symmetric characteristics which quickly falls off toward plus/minus infinity...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملDesign of novel architectures and field programmable gate arrays implementation of two dimensional gaussian surround function
A new design and novel architecture suitable for FPGA/ASIC implementation of a 2D Gaussian surround function for image processing application is presented in this paper. The proposed scheme results in enormous savings of memory normally required for 2D Gaussian function implementation. In the present work, the Gaussian symmetric characteristics which quickly falls off toward plus/minus infinity...
متن کاملطراحی و پیادهسازی سامانۀ بیدرنگ آشکارسازی و شناسایی پلاک خودرو در تصاویر ویدئویی
An automatic Number Plate Recognition (ANPR) is a popular topic in the field of image processing and is considered from different aspects, since early 90s. There are many challenges in this field, including; fast moving vehicles, different viewing angles and different distances from camera, complex and unpredictable backgrounds, poor quality images, existence of multiple plates in the scene, va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1409.4043 شماره
صفحات -
تاریخ انتشار 2014